
(J4 is current density distribution due to expansion of the beam only in the last section). 
If there is a considerable reduction in the length of the last section, then due to the reduc- 
tion in I~ the value J4 - L~ and the current density in tails at the target falls as L43/2. 
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CALCULATION OF THE IRREGULAR INTERACTION OF SHOCK WAVES 

I. S. Belotserkovets 
and V. I. Timoshenko 

UDC 533.6.011.72 

The problem is considered of irregular Mach interaction (reflection) of shock waves 
(SW). The flow structure is presented in Fig. la. At a certain point A there is formation 
of a reflected SWAB, a contact separation surface AL, and a strong SW AO with subsonic flow 
behind it. In the features of the mathematical definition of this problem it borders on the 
problem of spreading of a subsonic jet in an accompanying supersonic flow considered in [I]. 
In a nonviscous approximation Mach interaction of SW was considered in [2, 3] on the example 
of flow of an overexpanded jet in a flooded space. In the definition suggested in [I] it is 
possible to calculate Mach interaction taking account of gas viscosity. 

i. In order to clarify the general features of Mach interaction we consider evolution 
of the interaction picture with an increase in the intensity of incident SW ~'. The inten- 
sity of this wave with a prescribed Mach number for the incident flow MI, will be determined 
by the angle of its slope ~l- With regular interaction there is formation of a reflected SW 
whose slope angle is ~ clearly depends on M I and Bi. With an increase in Bl starting from 
some Sl = BI" two forms of interaction are theoretically possible: regular and Mach. For 
BI > B~ only Mach interaction is possible; S~ depends on MI, or what is the same, on the 
ratio Pl/P2, i.e., the pressures ahead of and behind an incident shock [4]. In spite of the 
fact that with ~l < B~ only regular reflection is observed by experiment, for the purposes 
of illustrating the effect of viscosity in pure form it is of interest theoretically with 
$i* < Si < B~ to consider Mach interaction. With $I > ~l* the line of contact separation AL 
is directed towards the plane of symmetry, and the strong SW is curved. With departure from 
point A downwards over the flow along line AL the angle of slope of the contact surface tends 
towards zero and there is isoentropic compression of the outer supersonic flow. Mach number 
at line AL tends towards the value M3* (BI, Ml)- With certain Bl = Bl** > 8~I, M3* = i, and 
the velocity equals sound velocity. For ~i < ~ flow in region ABL remains supersonic. The 
structure of flow in this case may be determined by only considering interaction between sub- 
sonic flow injet OALO' and supersonic flow in region ABL. We call this form of irregular 
interaction isolated. With 81 > $~ only Mach interaction of SW is realized. For Bl satisfy- 
ing the condition $~ < 82 < B1** flow along the whole of line AL with isoentropic compression 
remains supersonic. However, with interaction of compression waves formed in flowing around 
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AL, from reflected SWAB turning of the flow directly behind it by angle 82 in section B'B 
due to loss in the shock is only possible in subsonic flow. In spite of this under certain 
flow conditions in some finite region adjacent to point A the position of shock AB' may be 
worked out as before independent of conditions downward through the flow, although the possi- 
bility of physical realization of this flow is essentially determined by the conditions formed 
in the subsonic region of flow. This form of flow is also referred to as isolated. With 
Bl > ~i** (Ml) flow along line AL only remains supersonic at some distance from point A. 
Therefore the region of supersonic flow AB'L (Fig. la) is localized in some finite vicinity 
of point A. In this case the flow picture behind the reflected SW depends markedly on condi- 
tions formed downward over the flow, and the statement of the problem of isolated Mach inter- 
action becomes unclosed. In order to close the problem it is necessary to introduce addi- 
tional disturbances. In practical problems they arise under the influence of conditions at 
the boundary of flow. For example, with flow behind a Mach disk in the overexpanded jets as 
an additional disturbance there is a rarefaction wave formed with reflection of jump AB from 
the boundary of the jet (Fig. ib), and with flow in channels an additional disturbance arises 
with flow over the channel wall (Fig. Ic). 

The change in pressure along the jet is governed by interaction conditions with super- 
sonic flow in region ABL. Since the Mach interaction the angle of slope of the contact sur- 
face at point A is negative, and with departure downwards through the flow from this surface 
due to the effect of the plane of symmetry 00' it tends towards zero, then the contact sur- 
face should at least have areas of concavity. With supersonic flow past a concave contact 
surface there is an increase in pressure which causes retardation of a subsonic jet. This is 
not possible due to an increase in cross-sectional area of the jet bounded by surface AL and the 
requirement for mass conservation in the jet. Consequently, in the definition for a nonvis- 
cous gas the problem of isolated Mach interaction does not have a solution. This inconsis- 
tency is removed by considering the ejecting effect of supersonic flow which requires detailed 
consideration of viscous flow in the mixing layer replacing the contact separation in nonvis- 
cous gas. In this respect the problem of isolated interaction is similar to the problem of 
flow behind the base of a body in supersonic flow with presence of distributed subsonic in- 
jection which was considered in [I]. 

With unisolated interaction the change in pressure at line AL is determined not only by 
the shape of this line, but also the rarefaction wave impinging from outside under the action 
of which pressure decreases in a supersonic flow at a concave surface (Fig. I). In this case 
a closed solution may be obtained also in an approximation for a nonviscous gas. The effect 
of viscosity is quantitative in nature. These heuristic considerations are reinforced below 
by the results of analyzing the mathematical definition of the problem. 

2. We turn to a simple definition of the problem which considers the features enumerated 
above. We turn attention to the fact that although shock AO is curved, pressure along it 
changes little over a wide range of parameters. In view of this we shall consider that pres- 
sure is constant along the jet and in order to describe flow in it we use equations for a 
boundary layer: 
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Here uvi, wi, OPz, P01V~, hv2, FtFll are longitudinal and transverse components of the velocity 
vector, density, pressure, static enthalpy, and dynamic viscosity coefficient; H = u2/2 + h; 
Pr and Re, are Prandtl and Reynolds numbers. This set of equations should be solved with the 
following boundary conditions: at the nominal boundary of the viscous jet with y = 6(x) u = 
u6,  H = H6, and at the line of symmetry with y = 0 8u/By = 8H/3y = 0, v = 0. 

Pressure distribution p(x) is found as a result of solving the problem of interaction 
of flow in a viscous subsonic jet OALO' with an external nonviscous flow in region ABL which 
will be described by a complete set of Euler equations. The corresponding problem of viscous- 
nonviscous interaction is formulated in [i, 5]. It is shown that the pressure gradient may 
be connected with the change in effective displacement of the surface y = 6*(x), with param- 
eters in a viscous subsonic jet and at its boundary by the equation 

d6* 
dP 6 ?P6-~z -}- Av 
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where 

Equation (2.1) 
p6(x)  and 6*(x). 
sonic flow [5]: 
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is considered as a differential equation with respect to unknown functions 

The second e q u a t i o n  emerges from boundary  c o n d i t i o n s  f o r  n o n v i s c o u s  s u p e r -  
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Here 3p/By is derivative of pressure in the nonviscous part of the flow which is found nu- 
merically simultaneously with solution of the Euler equations. Equation (2.2) is an equation 
for pulse conservation written in a coordinate system connected with the flow line: 

Op 80 
o,--i + pu~ ~ = O. 

Thus, we have a set of differential equations (2.1), (2.2) for determining unknown functions 
P6(X) and 6*(x). For (2.1), (2.2) a Cauchy problem is formulated with starting data in sec- 
tion x = O: from nalculation of parameters at ternary point A and behind the normal shock 
d6*/dx and p6(D) are determined; as far as 6*(0) is concerned, then the condition for finding 
it is formulated by proceeding from the following circumstances. In Eqs. (2.1) and (2.2), 
which should be solved together with the Euler and boundary layer equations, it is possible 
to reduce the value of a to zero with a certain value x = x*. Here it is also necessary to 
reduce to zero simultaneously the numerator of Eq. (2.1). This is achieved by special selec- 
tion of the value 6*(0) equal to distance CA. A similar condition is used in order to deter- 
mine the pressure in isobaric fra<gmented zones [6], i.e., the nondition of closing the trace. 

In the case of isolated Mach interaction if the reflection of disturbances which arise 
with flow past slot face AL ~rom a reflected SWAB is disregarded, flow in the nonviscous re- 
gion may ~be described by solution for a simple wave with constant parameters along the first 
characteristic [7]. Then Eq. (2.2) may be rewritten in the form 

1 ,z~8, k / M I - I  ~1 dp~ (2 3) 
, [d~* ? d ~  2 ~ ~p~ .d~ "" 
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If no consideration is given to the effect of viscosity and in order to describe flow in a 
subsonic jet a quasi-unidimensional model is adopted as in [2, 3], then from (2.1) it is 
easy to obtain 

( t _ _ . ~ u )  t alP6 - dS* 
vv~ ,J~ d~ ( 2 . 4 )  

(M6u is Mach number in the jet). From Eqs. (2.3) and (2.4) it is impossible to solve the 
problem of isolated interaction without considering viscosity. In fact, at point A d6*/dx = 
tan@ 3 < 0, and with M26u < i, which occurs behind a strong SW, we obtain dp6/dx < 0. In turn 
from (2.3) it emerges that d26*/dx 2 < 0, by remaining negative with respect to the modulus it 
increases, which leads according to (2.2) to a further reduction in pressure and acceleration 
of subsonic flow, i.e., to an increase in M6u. In the section where M6u = 1 with finite 
d6*/dx, dp6/dx +- ~, which is physically impossible. Consideration of viscosity causes ap- 
pearance of the term A V in the numerator of (2.1), which it is possible with certain values 
of Re, it Rs possible to obtain dp6/dx > 0 with d6*/dx < 0 and M6u < i. Under these conditions 
d6*/dx with respect to modulus decreases and tends towards zero. The mass balance condition 
in a subsonic jet as already noted may be fulfilled due to the ejecting effect of external 
flow. 

With unisolated interaction it is necessary to consider Eq. (2.4) simultaneously with 
(2.2). With M6u < 1 it follows from (2.4) that (dp6/dx)d6*/dx > 0. With impingement from 
outside on surface AL of a rarefaction wave of sufficiently high intensity (Sp/3y < 0) it 
means that d26*/dx 2 > 0. Under these conditions with negative dp6/dx and d6*/dx there is a 
reduction in modulus d6*/dx with an increase in x and cases are possible when d6*/dx § 0 with 
MSu § i, i.e., the problem of unisolated Mach interaction for a nonviscous gas is resolvable 
in principle. 

3. We consider the problem of isolated interaction. In it there is no characteristic 
linear dimension but there is a parameter with a dimension of length ~/pu which for this 
problem is a governing linear dimension. If as geometric characteristic dimension distance 
AO is selected, then in dimensionless variables 6*(0) = 1 and the unknown paramter becomes 
characteristic Reynolds number Re I = Olul AO/~I. It is necessary to select this so that in 
Eq. (2.1) with some x the numerator and the denominator simultaneously reduce to zero. The 
results of solving the problem are presented in Fig. 2 where the dependence of Re I on M I is 
shown for different 61. It can be seen that Re I varies within the limits from 5 to i00, i.e., 
the distance is determined by the ratio AO = 5--i00 ~t/p~ut, and under real conditions flow 
is negligibly small. The smallness of Re I for the problem of isolated interaction gives 
some basis for considering a laminar flow regime behind a Mach blade before the closing sec- 
tion. 

4. We consider the case of isolated interaction on the specific example of flow of 
plane and axisymmetrical overexpanded jets. Jet parameters will be found with respect to 
M l and angle B1 for a shock arising at the nozzle outlet. From them it is easy to determine 
the jet operating conditions. Linear dimensions are related to half the width of the jet at 
the nozzle outlet. Since with quite high Reynolds numbers, which occur for this problem, 
flow in the mixing layer is hydrodynamically unstable, we shall consider that flow in a sub- 
sonic jet is turbulent. As a turbulence model we use the simple Prandtl algebraic_model [8] 
and the Sekundov differential turbulence model [9]. The height of the Mach blade Yd is un- 
known which is subject to dete[mination in solving the interaction problem. Presented in 
Fig. 3 are the dependences of Yd on M I with different values of 81- Solid and broken lines 
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are the results of calculations for plane flow in a jet in a nonviscous approximation and 
taking account of viscosity respectively, and perpendicular lines are calculated curves for 
axisymmetrical flow in a jet taking account of viscosity. All of the results provided were 
obtained using the simplified Prandtl equation for turbulent viscosity [8] with normal values 
of proportionality coefficient x = 0.03. Shown in Fig. 4 is the dependence of Mach disk 
diameter d/D (D is channel diameter) on the ratio of pressure at the outlet of an axisym- 
metrical nozzle Pz to the pressure in the surroundings p . Theoretical (curve i) and experi- 
mental (points) values are taken from [3]. Curve 2 relates to calculation by the method 
suggested taking account of viscosity for the Prandtl algebraic turbulence model, and 3 and 
4 for the Sekundov differential turbulence model [9] with a starting turbulence condition 
U~0 = 0.002 and 0.0002, respectively. 
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